本文共 4199 字,大约阅读时间需要 13 分钟。
从图中某个顶点V0 出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和V0有路径相通的顶点都被访问到(使用堆栈).
//使用邻接矩阵存储的无向图的深度优先遍历templatevoid Graph ::DFS(){ stack iStack; showVertex(0); vertexList[0]->wasVisted = true; iStack.push(0); while (!iStack.empty()) { int top = iStack.top(); int v = getAdjUnvisitedVertex(top); if (v == -1) { iStack.pop(); } else { showVertex(v); vertexList[v]->wasVisted = true; iStack.push(v); } } //使其还可以再深/广度优先搜索 for (int i = 0; i < nVerts; ++i) vertexList[i]->wasVisted = false;}
从图中的某个顶点V0出发,并在访问此顶点之后依次访问V0的所有未被访问过的邻接点,之后按这些顶点被访问的先后次序依次访问它们的邻接点,直至图中所有和V0有路径相通的顶点都被访问到.
若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止(使用队列)。
//使用邻接矩阵存储的无向图的广度优先遍历templatevoid Graph ::BFS(){ queue iQueue; showVertex(0); vertexList[0]->wasVisted = true; iQueue.push(0); while (!iQueue.empty()) { int front = iQueue.front(); iQueue.pop(); int v = getAdjUnvisitedVertex(front); while (v != -1) { showVertex(v); vertexList[v]->wasVisted = true; iQueue.push(v); v = getAdjUnvisitedVertex(front); } } for (int i = 0; i < nVerts; ++i) vertexList[i]->wasVisted = false;}
const int MAX_VERTS = 20;//顶点templateclass Vertex{public: Vertex(const Type &_node = Type()) : node(_node), wasVisted(false) {}public: bool wasVisted; //增加一个访问位 Type node;};//图template class Graph{public: Graph(); ~Graph(); void addVertex(const Type &vertex); void addEdge(int start, int end); void printMatrix(); void showVertex(int v); void DFS(); void BFS();private: int getAdjUnvisitedVertex(int v);private: Vertex * vertexList[MAX_VERTS]; int nVerts; int adjMatrix[MAX_VERTS][MAX_VERTS];};template void Graph ::DFS(){ stack iStack; showVertex(0); vertexList[0]->wasVisted = true; iStack.push(0); while (!iStack.empty()) { int top = iStack.top(); int v = getAdjUnvisitedVertex(top); if (v == -1) { iStack.pop(); } else { showVertex(v); vertexList[v]->wasVisted = true; iStack.push(v); } } //使其还可以再深度优先搜索 for (int i = 0; i < nVerts; ++i) vertexList[i]->wasVisted = false;}template void Graph ::BFS(){ queue iQueue; showVertex(0); vertexList[0]->wasVisted = true; iQueue.push(0); while (!iQueue.empty()) { int front = iQueue.front(); iQueue.pop(); int v = getAdjUnvisitedVertex(front); while (v != -1) { showVertex(v); vertexList[v]->wasVisted = true; iQueue.push(v); v = getAdjUnvisitedVertex(front); } } for (int i = 0; i < nVerts; ++i) vertexList[i]->wasVisted = false;}//获取下一个尚未访问的连通节点template int Graph ::getAdjUnvisitedVertex(int v){ for (int j = 0; j < nVerts; ++j) { //首先是邻接的, 并且是未访问过的 if ((adjMatrix[v][j] == 1) && (vertexList[j]->wasVisted == false)) return j; } return -1;}//打印节点信息template void Graph ::showVertex(int v){ cout << vertexList[v]->node << ' ';}template Graph ::Graph():nVerts(0){ for (int i = 0; i < MAX_VERTS; ++i) for (int j = 0; j < MAX_VERTS; ++j) adjMatrix[i][j] = 0;}template Graph ::~Graph(){ for (int i = 0; i < nVerts; ++i) delete vertexList[i];}template void Graph ::addVertex(const Type &vertex){ vertexList[nVerts ++] = new Vertex (vertex);}template void Graph ::addEdge(int start, int end){ //无向图 adjMatrix[start][end] = 1; adjMatrix[end][start] = 1;}template void Graph ::printMatrix(){ for (int i = 0; i < nVerts; ++i) { for (int j = 0; j < nVerts; ++j) cout << adjMatrix[i][j] << ' '; cout << endl; }}//测试代码int main(){ Graph g; g.addVertex('A'); //0 g.addVertex('B'); //1 g.addVertex('C'); //2 g.addVertex('D'); //3 g.addVertex('E'); //4 g.addEdge(0, 1); //A-B g.addEdge(0, 3); //A-D g.addEdge(1, 0); //B-A g.addEdge(1, 4); //B-E g.addEdge(2, 4); //C-E g.addEdge(3, 0); //D-A g.addEdge(3, 4); //D-E g.addEdge(4, 1); //E-B g.addEdge(4, 2); //E-C g.addEdge(4, 3); //E-D g.printMatrix(); cout << "DFS: "; g.DFS(); cout << "\nBFS: "; g.BFS(); return 0;}